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Abstract—Electric utilities are rapidly deploying smart meters
that record and transmit electricity usage in real-time. As prior
research shows, smart meter data indirectly leaks sensitive, and
potentially valuable, information about a home’s activities. An
important example of the sensitive information smart meters
reveal is occupancy—whether or not someone is home and when.
As prior work also shows, occupancy is surprisingly easy to detect,
since it highly correlates with simple statistical metrics, such as
power’s mean, variance, and range. Unfortunately, prior research
that uses chemical energy storage, e.g., batteries, to prevent
appliance power signature detection is prohibitively expensive
when applied to occupancy detection. To address this problem,
we propose preventing occupancy detection using the thermal
energy storage of large elastic heating loads already present in
many homes, such as electric water and space heaters. In essence,
our approach, which we call Combined Heat and Privacy (CHPr),
controls the power usage of these large loads to make it look
like someone is always home. We design a CHPr-enabled water
heater that regulates its energy usage to mask occupancy without
violating its objective, e.g., to provide hot water on demand, and
evaluate it in simulation and using a prototype. Our results
show that a 50-gallon CHPr-enabled water heater decreases
the Matthews Correlation Coefficient (a standard measure of a
binary classifier’s performance) of a threshold-based occupancy
detection attack in a representative home by 10x (from 0.44 to
0.045), effectively preventing occupancy detection at no extra cost.

I. INTRODUCTION

The design of “smart” grids that optimize electricity gen-
eration and consumption to make it greener and more efficient
has emerged as an important research area.! Smart grids are
envisioned to leverage a variety of techniques to optimize their
operation, including distributed generation from renewables,
demand-side management, and variable time-of-use pricing,
that require timely, fine-grained knowledge of electricity con-
sumption at buildings throughout the grid. To support these
optimizations, utilities are rapidly replacing existing electrome-
chanical meters, which are read manually once a month, with
smart meters that transmit a building’s electricity usage every
few minutes. In 2011, an estimated 493 utilities in the U.S. had
collectively installed more than 37 million smart meters [1].

Unfortunately, smart meters also indirectly leak private, and
potentially valuable, information about a building’s occupants’
activities [2], [3], [4], [5], [6], [7]. To extract this information,
third-party companies are now employing cloud-based, “big
data” platforms to analyze smart meter data en masse [8], [9],
[10]. While the purpose is, ostensibly, to provide consumers
energy-efficiency recommendations, companies are mining the
data for any profitable information. For example, detecting
power signatures—sequences of changes in power unique to a
device—for specific appliance brands could aid manufacturers
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in guiding their marketing campaigns, e.g., identifying homes
with GE versus Maytag appliances [8]. Many utilities are
providing third-party companies access to troves of smart
meter data. For instance, a recent report highlights one utility’s
practice of requiring its customers to consent to sharing their
data with third parties before permitting them to use an online
web portal [11]. Such privacy violations have led to a small,
but growing, backlash against smart meters [12].

An important example of simple and private information
that smart meters leak is occupancy—whether or not someone
is home and when. Tech-savvy criminals are already exploit-
ing similar types of unintentional occupancy leaks, e.g., via
publicly-visible online calendars and Facebook posts [13],
to select victims for burglaries. In addition, occupancy may
also indirectly reveal private information that is of interest to
insurance companies, marketers, potential employers, or the
government, e.g., in setting rates, directing ads, vetting an
applicant’s background, or monitoring its citizens, respectively.
Such information could include whether a home’s occupants:
i) include a stay-at-home spouse, ii) keep regular working
hours and daily routines, iii) frequently go on vacation, or iv)
regularly eat out for dinner. As recent work demonstrates [14],
[15], launching attacks that extract occupancy from smart me-
ter data is surprisingly easy, since occupancy highly correlates
with simple statistical metrics, such as power’s mean, variance,
and range. Intuitively, users’ interaction with electrical devices,
e.g., turning them on and off, lends itself to straightforward
attacks that detect changes in these metrics and associates them
with changes in occupancy. Figure 1 emphasizes the point by
overlaying a home’s average power usage every minute with its
occupancy—one is occupied and zero is unoccupied—between
6am and 1lpm: power usage clearly increases and becomes
more variable whenever people are home. The correlation
between occupancy and power is not unique to this particular
home—prior work [14], [15] has observed it in several homes.

Prior research proposes techniques to thwart privacy attacks
on smart meter data [2], [3], [5], [7]. Broadly, these techniques
use chemical energy storage, in the form of batteries, to power,
or absorb, a fraction of a building’s total load, thereby changing
the pattern of external grid power usage the smart meter
records. By carefully controlling when batteries charge and
discharge, the techniques prevent detecting appliance power
signatures using sophisticated algorithms for Non-Intrusive
Load Monitoring (NILM) [16], [17], [18]. However, these
prior approaches do not change the statistical properties, e.g.,
high mean power, variance, and range, that imply occupancy,
and are not designed to prevent occupancy detection. Thus,
new techniques are necessary. To address the problem, we
propose Combined Heat and Privacy (CHPr), which regulates
thermal, rather than chemical, energy storage to make it look
like someone is always home.
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Fig. 1. When occupied, a home’s average power demand typically becomes

larger and more variable due to occupants turning loads on and off.

One obvious, albeit wasteful, option for implementing
CHPr is to simply consume power by dissipating heat without
directing it to a useful purpose. Interestingly, a naive CHPr
strategy that masks occupancy by consuming (and wasting)
energy to ensure demand is nearly always flat—close to the
peak demand—is cost-competitive with comparable battery-
based techniques due to the low price of electricity (12¢ per
kWh on average [19]) and the high cost of batteries (~$118
per kWh per year [20]). However, to prevent both wasting
energy and increasing electricity costs, we propose integrating
CHPr functionality into the large electric heating loads already
found in many homes, such as water and space heaters. These
loads effectively serve as thermal energy storage devices that
CHPr can control to mask occupancy. In particular, we design
a CHPr-enabled water heater with the goal of preventing occu-
pancy detection without running out of hot water. Our approach
combines multiple techniques to accomplish this goal: it i) uses
partial demand flattening to eliminate a large majority of power
variations, ii) injects artificial power signatures to obscure the
relationship between occupancy and high, variable demand,
and iii) adjusts its operation based on home activity patterns.
CHPr is inspired by Combined Heat and Power (CHP) [21],
which leverages the waste heat produced as a byproduct of
generating electricity for water and space heating in buildings.

Our hypothesis is that a CHPr-enabled water heater is
capable of regulating its power usage to prevent occupancy de-
tection while still providing hot water on demand. In evaluating
our hypothesis, this paper makes the following contributions.
Design Alternatives. We describe the different design alter-
natives for preventing occupancy detection, including using
both chemical and thermal energy storage, from smart meter
data. We focus on our analysis on a simple threshold-based
occupancy detection attack described in prior work [15].
CHPr-enabled Water Heater. We present the design of our
CHPr-enabled water heater and its algorithm for regulating
energy usage to prevent occupancy detection without running
out of hot water. The approach combines partial demand
flattening, artificial power signature injection, and an activity-
based optimization to minimize its total energy requirements.
Implementation and Evaluation. We experiment with our
CHPr-enabled water heater in simulation and by deploying
a proof-of-concept prototype in a real home. Our evaluation
quantifies CHPr’s effectiveness using data from both the home
and a real water heater. We show that our approach decreases
the Matthews Correlation Coefficient—a standard measure of
a binary classifier’s overall performance—of a threshold-based
attack on the home’s smart meter data by a factor of 10 (from
0.44 to 0.045), effectively preventing occupancy detection.

II. BACKGROUND

Our work assumes a building equipped with a smart meter
that monitors aggregate electricity usage, and records the
building’s average power P(t) over a sampling interval T,
yielding a time-series of power values. Today’s newer utility-
grade smart meters support sampling intervals from one to
five minutes, while older meters support fifteen minutes to an
hour. As a result, we focus on preventing occupancy detection
from smart meter data with a one-minute sampling interval.
Adapting our techniques to commercial power meters that offer
higher resolution monitoring, e.g., 1Hz or greater, is future
work. Given such a time-series P(t), we represent occupancy
as a binary function O(t), over each sampling period ¢, where
zero represents an unoccupied home and one represents a home
with at least one person in it. Our work focuses on masking
occupancy to prevent inferring O(t) from P(t).

Since we are not aware of a general metric that applies
to any possible occupancy detection attack, we evaluate CHPr
using a threat model based on a specific and straightforward
threshold-based attack, which signals occupancy if power’s
mean, variance, or range exceeds some pre-defined threshold.
In particular, we define an interval length T}, ¢ervqi, and then
compute power’s mean, variance, and range over each interval.
Anytime a metric exceeds a pre-defined power threshold, e.g.,
the nighttime average, we record a potential occupancy point,
resulting in a series of points in time. We then cluster points to
infer occupancy over time, such that if two points are within
a time threshold, we consider the home occupied during the
interval between those points. Our attack leverages the intuition
from Figure 1 that occupancy correlates with periods of high,
variable demand. A detailed description and evaluation of the
attack is available in recent work [15], and is outside the
scope of this paper. The attack above is simple, effective, and
applies to the minute-level power data resolutions supported
by smart meters. Using CHPr to prevent other types of attack
vectors [14] and other sampling resolutions is future work.

A. Prior Work

One way to prevent leaking any information, including
occupancy, through smart meter data is to employ crypto-
graphic techniques within the meter itself [6], [22], [23].
These techniques enable utilities to verify the correctness of
various functions applied to smart meter data, e.g., a monthly
bill using time-of-use rates, without requiring access to raw
meter readings. However, this approach requires utilities to
implement these protocols, including modifying the software
of millions of already-installed smart meters [6], [22], [23]. As
indicated in Section I, since smart meter data is valuable to util-
ities, they have little incentive to upgrade their infrastructure.
Thus, an alternative approach, which does not require utility
cooperation, is for consumers to obscure their smart meter data
by actively altering their home’s grid power consumption. Prior
techniques propose to alter grid power usage by controlling
battery charging and discharging, called Battery-based Load
Hiding (BLH) [2], [3], [5], [7].

BLH techniques focus primarily on preventing Non-
Intrusive Load Monitoring (NILM) [16], [18], which analyzes
changes in P(t) to compute a separate power time-series
p;i(t) for each ¢ = 1...n appliances in a home. While



3 1 3
> > >
[9) [9) [9)
< g < g < g
2 2t o 2 2t o S 2 o
= =] = =] = =]
T 8 e g T 8
s Q s Q s Q
L x 5 x x
g E &k g & g
< < <
0 0 0 0 0 0
7am 10am 1pm 4pm 7pm 11pm 7am 10am 1pm 4pm 7pm 11pm 7am 10am 1pm 4pm 7pm 11pm
Time (hours) Time (hours) Time (hours)
(a) Original (b) NILL (c) LS2

Fig. 2. A threshold-based attack is effective at detecting occupancy in smart meter data (a) when altered by BLH techniques, such as NILL (b) or LS2 (c).

BLH techniques have not been explicitly designed to prevent
occupancy detection, we briefly describe two representative
examples of BLH below to i) demonstrate that BLH techniques
do not prevent occupancy detection simply as a side-effect of
preventing NILM and ii) highlight the inherent difficulties in
using batteries to mask occupancy. Our results show that BLH
cannot defend against our simple threshold-based occupancy
detection attack using practical battery capacities.

Non-Intrusive Load Leveling or NILL [5] removes changes
in P(t) that reveal appliance power signatures by leveling, or
flattening, the home’s external grid demand recorded by the
smart meter. In essence, NILL charges batteries when actual
demand is below a target demand, and then discharges batteries
when it is above the target demand, to maintain meter readings
as near to the target as possible. Ideally, demand is flat and
always equal to the target demand, thereby revealing only
the home’s average power usage and nothing else. Of course,
only revealing the building’s average power would effectively
prevent accurate occupancy detection over time. Unfortunately,
for practical battery capacities, NILL diverges from this ideal.
As we show below, once NILL fully discharges its battery, it
can no longer alter the demand. Since battery depletion often
occurs during the high demand periods that strongly correlate
with occupancy, NILL does not prevent occupancy detection.

Lazy Stepping or LS [7] is an improvement to NILL that
requires much less battery capacity to obscure appliance power
signatures. The idea behind LS is that, rather than flatten a
home’s demand, it controls battery charging and discharging
to transform demand into a step function that removes the
fine-grained changes in power useful in identifying appliances.
However, as we show below, LS does not prevent occupancy
detection: the periods of high demand that strongly correlate
with occupancy remain clearly identifiable. LS’s technique
highlights an important point: since occupancy correlates with
periods of high demand, preventing occupancy detection is,
in part, related to the amount of energy a building is able
to shift across time. While LS is capable of judiciously
using a much smaller battery than NILL to hinder NILM,
preventing occupancy detection necessitates a larger capacity
battery capable of masking periods of high demand, e.g., either
by flattening them or injecting artificial high demand periods.

B. Problems with Masking Occupancy using Batteries

Figure 2 empirically demonstrates the points above by
using our simple attack to detect occupancy, even after demand
has been altered by NILL and LS2.> The graphs overlay a

21S2 is the best performing variant of LS [7].

home’s average power usage every minute with the results of
our occupancy detection attack for the same home and day as
in Figure 1. In this case, we set the thresholds above equal to
each metric’s value at night, which is similar to its value in
an unoccupied home, with a clustering threshold of one hour.
Figure 2(a) shows that, for the unaltered demand, with the ex-
ception of two brief periods, the attack’s predicted occupancy
nearly exactly matches the ground truth from Figure 1.

Figure 2(b) then shows the results of the same attack on
demand altered by NILL using a 6kWh battery, as in [5].
Despite the altered demand, the attack is still able to accurately
detect occupancy. The NILL-altered demand demonstrates that,
in practice, battery capacity limitations prevent ideal demand
flattening. As expected, NILL does not prevent the high
demand periods that correlate with occupancy, since it tends
to deplete its battery during these periods, eliminating the
option to later discharge its batteries to mask high demand.
Of course, there exists some larger battery capacity, such that
NILL would completely flatten demand at a home’s average,
thereby preventing accurate occupancy detection. However,
6kWh of usable capacity’ already imposes an excessively high
cost—3$708 per year amortized over a battery’s lifetime based
on recent cost estimates [20], which would increase an average
U.S. home’s annual electricity bill by roughly 50% [24].

Likewise, Figure 2(c) shows the results of the attack on
demand altered by the LS2 algorithm, which uses much less
battery capacity—0.5kWh in this case, as in [7]—than NILL
to hinder NILM. As the graph demonstrates, with 0.5kWh of
battery capacity, LS2’s battery is simply too small to mask
the periods of high demand by discharging its battery. Instead,
LS2 discretizes demand to obscure the many small changes
in power that NILM might leverage to identify appliances. As
Figure 2(c) shows, due to the small capacity battery, demand
altered by LS2 retains the general shape of the original demand
profile including the periods of high, variable demand that
indirectly reveal the home’s occupancy status.

Table I quantifies the effectiveness of both approaches by
showing the percentage of time our attack yields true positives
(detects occupancy and the home is occupied), true negatives
(detects no occupancy and the home is not occupied), false
positives (detects occupancy but the home is not occupied),
and false negatives (detects no occupancy but the home is
occupied). The accuracy is then the sum of the true positive and
true negative percentages. The table also shows the Matthews
Correlation Coefficient (MCC) [25], a standard measure of a

3Cost estimates are based on a commercially-available sealed AGM/VRLA
deep-cycle lead-acid battery designed for home solar panel installations.



External Demand | True Positives | True Negatives | False Positives | False Negatives || Accuracy | MCC
Original (a) 41.86% 46.57% 1.27% 10.29% 88.43% 0.78
NILL (b) 37.25% 47.84% 0% 14.90% 85.09% 0.74
LS2 (c) 23.53% 43.92% 3.92% 28.63% 67.45% 0.42

TABLE 1.

binary classifier’s performance, where values are in the range
—1.0to 1.0, with 1.0 being perfect detection, 0.0 being random
prediction, and —1.0 indicating detection is always wrong.
MCC values closer to 0.0, or random prediction, are better for
masking occupancy. The table shows that our simple threshold-
baed occupancy detection attack is effective on demand altered
by NILL or LS2: it yields an MCC of 0.74 and 0.42 on the
NILL-altered and LS2-altered demand, respectively, which is
near the MCC (0.78) of the attack on the original demand.

Summary. BLH’s primary drawback when applied to the prob-
lem of preventing occupancy detection is that battery-based
energy storage is expensive. Masking occupancy detection
is, in part, related the amount of total energy a building is
able to shift across time. While NILL could effectively mask
occupancy with a sufficiently large battery, e.g., by completely
flattening a home’s demand at its average, the cost would be
high, e.g., a yearly expense greater than 50% of a home’s
annual electricity bill. While LS shows that judiciously control-
ling the charging and discharging for small capacity batteries
is effective at hindering NILM, a small capacity battery simply
cannot mask the periods of high, variable demand that indicate
occupancy. In addition, any BLH technique, including both
NILL and LS2, wastes a fraction of any energy it stores in
its battery, due to energy conversion losses. These losses are
at least 20% of the stored energy with existing battery and
inverter technology [26]. The insights above lead to CHPr’s
approach, which leverages the thermal energy storage inherent
to large elastic heating loads, such as water heaters, to cheaply
and efficiently mask occupancy. Since a 4.5kW water heater
that runs for a typical three hours per day consumes 13.5kWh
of energy [27], it is capable of shifting significantly more
energy than the NILL or LS examples above. In addition,
since CHPr only reschedules energy a water heater already
consumes, it avoids energy conversion losses.

III. USING THERMAL STORAGE: DESIGN ALTERNATIVES

We consider the design alternatives for using thermal
energy storage to mask occupancy. Figure 3 highlights the
differences between BLH and thermal energy storage. BLH
flattens grid demand by controlling battery charging and dis-
charging, such that, in the ideal (although not in practice for
reasonable battery capacities), the smart meter always sees
a steady, flat power consumption level (depicted by 7' in
Figure 3(a)). Whenever the home’s demand rises above T,
BLH discharges its battery to provide the home additional
power, rather than drawing it from the grid. The approach
thwarts occupancy detection attacks by “clipping” any power
usage above 7T, exposing a constant power usage to the smart
meter that effectively makes it look like no one is ever home.*

Thermal energy storage is also capable of flattening de-
mand in a similar manner, although it cannot “clip” power
usage in the same way as a battery, since it is incapable of

4An occupancy detector may still detect occupancy if 7" is sufficiently high.

PERFORMANCE OF OUR THRESHOLD-BASED ATTACK ON A HOME’S ORIGINAL DEMAND AND AFTER BEING ALTERED BY NILL AND LS2.

discharging general-purpose electricity, i.e., it cannot convert
its heat back into electricity. Instead, thermal energy storage
can only flatten demand by raising grid power usage, e.g., by
converting electricity into heat, to its peak level (depicted by T”
in Figure 3(b)). In this case, the thermal storage device controls
its resistive heating elements to draw a variable amount of
power (above the normal power draw) to ensure that the total
power draw is always T". Thus, thermal energy storage is able
to thwart occupancy detection by “boosting” power usage such
that the home always draws a steady power T” from the grid.
The thermal device then stores the heat for later use.

Since the homes we monitor have a high peak-to-average
power ratio, raising power usage to the peak value 7" requires
a substantial amount of energy, which in turn requires a large
amount of thermal energy storage capacity to make use of the
heat. To reduce the power necessary to mask occupancy, ther-
mal energy storage can also leverage artificial power signature
injection, which controls the thermal device to inject “noise”
that resembles real electrical loads in the home (depicted in
Figure 3(c)). By injecting fake signatures that resemble real
loads during low-power periods when no one is home, the
approach makes it appear that someone is always home, which
also thwarts occupancy detection, but using less energy. As
before, the thermal device stores its heat for later use. As we
describe in the next section, CHPr leverages a hybrid approach
(in Figure 3(d)) that combines artificial signature injection with
partial demand flattening, such that it raises demand to an
intermediate value 7" (below the peak value 7”). Since partial
demand flattening reveals peaks above T/, CHPr only injects
artificial signatures larger than 7.

IV. A CHPR-ENABLED WATER HEATER

A standard tank-based residential water heater includes a
reserve tank with a cold-water inlet pipe at the bottom and a
hot-water outlet pipe at the top, since heated water naturally
rises to the top of the tank. Residential water heaters include
tanks that range in size from 30-100 gallons (equivalent to
113.6-378.5 liters, respectively) with heating elements ranging
from 3500W to 5500W. Importantly, a water heater’s average
total energy usage (and its thermal energy capacity) is a
significant fraction of an average home’s usage. For example,
a standard 50 gallon (or 189.3 liter), 4.5kW water heater that
runs for three hours each day consumes 13.5kWh [27], while
an average U.S. home consumes only ~24kWh per day [24].

A typical water heater operates by always attempting
to ensure that i) the tank is full and ii) the tank’s water
temperature is equal to an adjustable target temperature that is
typically set between 120F and 140F (or 48.9C to 60C). Thus,
when hot water is drawn from the tank, e.g., due to someone
taking a shower, the water heater refills the tank with cold
water, and then immediately begins heating it at maximum
power until the tank’s water reaches the target temperature.
The temperature of the intake water is usually in the range
of 50F-60F (or 10C-15.6C), but is dependent on the climate.
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Water heaters generally employ a tight guardband of 15F (or
8.33C), such that if no hot water is drawn out, the water heater
waits until the water is, for example, 105F (or 40.6C) before
reheating it to the 120F (or 48.9C) target [28]. Since hot water
rises, water heaters often employ two heating elements and
thermostats, one at the top and bottom of the tank.

A CHPr-enabled water heater works by relaxing the opera-
tional requirements above and not always using the maximum
power to immediately heat intake water. As an example,
Figure 4 shows the power usage of a 50 gallon (or 189.3
liter), 4500W water heater over one day on the left y-axis.
The short regular bursts of power are due to maintaining
the water temperature within the 15F guardband, while the
longer periods of power usage stem from heating the cold
intake water that is replacing hot water drawn out of the tank.
The right y-axis shows the amount of available hot water (at
120F), assuming ideal insulation where it takes 2.93x10~*kWh
to raise 1lb (or 0.45kg) of water by 1F (or 0.56C). We
then compute the amount of 120F (or 48.9C) hot water by
correlating the heater’s energy usage with a volume of heated
water. Figure 4 indicates that, on this day, the tank never runs
out of hot water. The figure also shows that the water heater
could heat at a slower constant rate (indicated by the dotted red
lines) using less than the maximum power without ever running
out of hot water. Rather than heat at a slow constant rate, CHPr
varies the heating element’s power usage to partially flatten
demand and inject artificial signatures to mask occupancy,
while using the same amount of energy over the period.

To determine how fast it must heat water to prevent running
out, which dictates the energy it must consume over a given
period, CHPr tracks the amount of remaining hot (120F/48.9C)
water at the top of the tank and estimates the time until the
next significant use of hot water. Our current implementation
simply maintains an estimate of the average length ¢ between
usage periods greater than 25 gallons (or 94.66 liters), or
roughly a single shower, and ensures that after a significant
usage period all the water is heated within ¢. While more
sophisticated methods for estimating ¢ are possible, we did not
explore them since our simple method proved effective. Given
an energy budget and this time period estimate ¢, CHPr then
determines how much to partially flatten demand and inject
artificial signatures, as described below.

Partial Demand Flattening. Since a water heater does not
use enough energy to completely flatten demand at the peak
demand, CHPr employs a flattening threshold Pgq; that only
partially flattens demand to a target level less than the peak de-
mand. To maintain Py, at each ¢ with current demand N (),

CHPr must consume Pjq-N(t) whenever N(t) < Ppqy.
Since average demand is typically much lower than peak
demand, a low flattening threshold is able to hide a large
percentage of the changes in power without using much energy.
Figure 5 illustrates this point by showing the energy required in
our home deployment (as a percentage of the home’s total en-
ergy usage) to support various flattening thresholds, along with
the amount of exposed readings above the flattening threshold.
The figure shows that supporting flattening thresholds near
1kW do not require a significant amount of energy (<5%),
but reduce the exposed readings by more than 25%.

Artificial Power Signature Injection. Partially flattening
demand still exposes changes in power that occur above the
threshold. To hide these changes, CHPr injects artificial power
signatures. Importantly, CHPr does not simply inject demand
randomly, since an attacker may be able to detect these random
or atypical patterns in smart meter data. Instead, CHPr replays
realistic power signatures. These power signatures are derived
from the home’s aggregate data, by storing, in a database,
sequences of the home’s power changes that occur above the
flattening threshold. CHPr also takes additional steps to ensure
artificial demand is difficult to discern from real demand. For
example, the power signature database includes attributes for
each signature, such as average power and duration. CHPr
then divides power signatures into categories based on their
attributes, e.g., small, medium, large and short, medium, and
long, and computes the fraction of signatures in each category.

We use this fraction to weight each category’s random se-
lection, such that the artificial demand matches the breakdown
of real demand. In addition, to prevent attackers from detecting
repeated signatures, CHPr introduces some randomness into
the replayed signature by raising or lowering each point by
a small random amount, e.g., 0-5% of usage. Finally, to
reduce its energy requirements, CHPr only injects signatures
when the home is unoccupied. Our premise is that injecting
artificial power signatures should not be necessary when a
home is occupied—-there is no need to make the data look
like someone is home when someone actually is home. When
the home is unoccupied, CHPr randomly selects signatures
from the database to inject and replay at an injection rate
equal to the rate at which the home generates power signatures
above the flattening threshold when occupied. Our prototype
explicitly tracks home occupancy by monitoring occupants’
GPS coordinates in real time via a smartphone application.

Activity-aware Optimization. CHPr makes a home’s power
profile look like someone is always home. However, even an
occupied home’s expected power usage differs over time. For
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Fig. 4. A day’s power usage (black) for a 50 gallon (or 189.33 liter), 4.5kW
water heater, and the remaining hot (120F/48.9C) water in its tank (red).

example, a home’s typical nighttime power usage is much
lower than its daytime usage, even when occupied. Likewise,
a home’s weekend power usage is often much greater than
its weekday usage. Since these patterns are expected, there
is no need to make low-power nighttime periods look like
high-power daytime periods, or low-power weekdays look like
high-power weekends. Instead, CHPr need only ensure that
these time periods look the same with respect to each other,
regardless of whether a home is occupied or unoccupied. Thus,
CHPr adapts itself based on activity patterns by using a differ-
ent flattening threshold, injection rate, and signature database
at different times. CHPr sets different flattening thresholds
and injection rates for days and nights, and weekends and
weekdays. In addition, CHPr indexes its power signature
database based on each signature’s real time-of-use. At any
given time, CHPr randomly selects from past power signatures
that also occurred near that time, e.g., within an hour, since
typical power signatures in the morning, e.g., a coffee maker,
are likely to be different from those in the evening, e.g., a
TV. Indexing signatures by time is also important because an
attacker could exploit usage patterns that appear unnatural.

Tuning CHPr. CHPr sets the flattening threshold Pyq; for
each period based on the excess energy available after estimat-
ing the energy required to inject artificial signatures (based on
the rate of signatures observed when the home is occupied).
Of course, CHPr could run out energy if its i) estimated energy
budget over a time period ¢ is inaccurate or ii) occupants leave
for extended periods, such that the water heaters does not have
enough thermal capacity to partially flatten demand and inject
artificial signatures over the period. As with BLH, whenever
CHPr runs out of energy it has no choice but to expose
the home’s raw usage to the smart meter. We evaluate the
frequency and impact of running out of energy in Section VI.

V. CHPR IMPLEMENTATION

We implement both a CHPr simulator and proof-of-concept
prototype. The simulator, written in R, takes as input a home’s
aggregate power trace and its water heater power trace, and
reschedules the water heater’s power consumption based on
the approach outlined in the previous section. In addition
to the simulator, we also deploy a proof-of-concept CHPr
prototype in a real 3-bedroom, 2-bath house. Rather than
implement a full-fledged water heater, the prototype’s purpose
is only to demonstrate the ability to modulate a home’s power
usage to mask occupancy based on CHPr’s approach. To do
this, we employ 18 Insteon LampLinc programmable dimmer
switches [29], which enable a computer to remotely set their
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Fig. 5. Partial demand flattening hides many changes in power (below the

P44 threshold) without requiring a significant fraction of the home’s energy.

dim level via the Insteon powerline networking protocol. We
use LampLincs because they are widely available and have
open-source software support. Controlling the LampLincs’ dim
level enables us to control their power usage in the same way
as a water heater’s heating element.

The prototype uses an eGauge power meter [30] in the
home’s electrical panel to query the real-time power readings
for the whole home every second via a web-based APIL In
addition, each of the home’s two adult occupants run a real-
time geolocation application on their cell phone, which our
software queries in real time to determine the home’s ground
truth occupancy (based on the occupants’ GPS coordinates).
We have collected GPS data for roughly one year, and power
data for over three years. We implement CHPr’s algorithm
from the previous section in Python and run it on an embedded
Linux-based DreamPlug server, which connects to an Insteon
Powerline Modem via USB to programmatically control the
power usage of the LampLincs. The system is able to use
simple Insteon command-line tools for Linux to turn each
LampLinc on and off and adjust its dim level between 0% and
100% in increments of 1%. Since a light bulb’s power usage
scales linearly with its dim level, the system is capable of
controlling power usage at 3W granularities (1% of one 300W
LampLinc). In total, the 18 LampLincs enable the system to
control 18*300W = 5400W of power, which is sufficient for
replaying even sizable loads in the home. The software stores
the set of artificial power signatures, indexed by time period,
that are available for replay in a sqlite3 database, and then
queries the database to select signatures for replay. We seed
the power signature database with real power signatures based
on the past six months of usage, indexed by their time-of-
use to support our activity-aware optimization. The size of the
implementation is less than 1500 lines of code.

VI. EXPERIMENTAL EVALUATION

We evaluate CHPr’s effectiveness against our threshold-
based occupancy detection attack in the home above [15],
both in simulation (using data collected from the home) and
using our prototype deployed in the home. While the home’s
occupancy rate appears high, based on our own data collection
at three other homes and national statistics [19], [24], we
believe the home’s power usage and occupancy pattern are
representative of a large class of homes. For instance, consider
that even if all occupants are away for a standard 40-hour work
week (8 hours per day), and home otherwise, the resulting
occupancy rate is still 76.2% (128 out of 168 hours).
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detected occupancy when using the threshold-based occupancy detection attack outlined in Section II (bottom) .

Preventing Occupancy Detection. Figure 6 uses our simulator
(with input data from the home above over a representative
week in the summer) to demonstrate CHPr’s ability to mask
occupancy The top graph shows both the home’s power usage,
including a standard 50 gallon (or 189.3 liter) water heater, as
well as its ground truth occupancy using the occupants’ GPS
coordinates. The brief spikes in electricity usage throughout the
week are due to heating water. The lower graph then shows
the power usage after rescheduling the water heater’s power
consumption using CHPr, as well as the detected occupancy
of this modified power trace using our threshold-based attack.
A good example of CHPr’s capabilities occurs between days
four and five when the home is unoccupied for an extended
period. Using the original demand, the low power usage clearly
indicates the occupants are away, while the CHPr-modified
demand makes the power usage appear similar to an occupied
home. While there are a few instances where the water heater
runs out of energy, i.e., fully heats all of its tank’s water,
that cause it to expose a low power usage that may reveal an
unoccupied home, e.g., between days two and three, the data
exposes much less occupancy information overall. In addition,
there are no instances where our (simulated) reserve tank runs
out of hot water due to CHPr’s operation.

We also quantify the performance of the occupancy detec-
tion attack on both the original demand and the CHPr-modified
demand in terms of the Matthews Correlation Coefficient
(MCQC) [25]. Recall from Section II, that the MCC is a standard
measure of a binary classifier’s performance, where values are
in the range —1.0 to 1.0, with 1.0 being perfect detection,
0.0 being random prediction, and —1.0 indicating detection is
always wrong. MCC values closer to 0.0, or random prediction,
are better for masking occupancy. In this case, our results show
that the MCC of the attack on the CHPr-modified data is only
0.045, which is nearly the same as random prediction, i.e., an
MCC of 0.0, and is a factor of 10 less than the MCC of the
attack on the original data, which is 0.44.

Result: By lowering the MCC to 0.045, our CHPr-enabled
50 gallon (or 189.3 liter) water heater effectively prevents
occupancy detection from the threshold-based attack in our
simulated home without exhausting the hot water supply.
Unlike battery-based techniques, CHPr requires no additional
power usage and does not increase power costs.

Optimizations. Figure 7(a) shows CHPr’s energy requirements

(as a percentage of the home’s total demand) from employing
our various optimizations in our simulated home. The graph
demonstrates the benefit of i) the activity-aware optimization
that determines different flattening thresholds and injection
rates at different times, in this case day versus night and
weekday versus weekend, and ii) the occupancy-aware op-
timization that only injects artificial power signatures when
occupants are away. Since nights and weekdays exhibit lower
power usage than days and weekends, CHPr requires much less
energy during these periods to mask occupancy. The graph also
indicates that only injecting artificial signatures when the home
is unoccupied also results in a significant energy reduction.
Ultimately, the result shows that combining these optimizations
versus using none of them reduces CHPr’s energy requirements
by nearly a factor of two, enabling it to make efficient use of
the water heater’s limited thermal energy storage capacity.

Result: CHPr’s occupancy- and activity-aware optimizations
are important in reducing, in this case by over a factor of two,
the energy required to prevent occupancy detection from our
threshold-based attack in our simulated home.

Prototype Demonstration. While the results above use our
simulator, Figure 7(b) demonstrates the performance of our
CHPr prototype for an eight hour period for both 1-minute
and 5-minute average power data. In this case, the unmodified
demand is the home’s demand without CHPr’s contribution,
while the CHPr-modified demand is the external usage seen
by the smart meter, which includes using the prototype to
reschedule the power usage of an emulated water heater.
We can extract these separate power values because eGauge
records power for each of the home’s 26 individual circuits.
The experiment shows how our prototype modifies a home’s
demand in real time, including both flattening it and accurately
replaying artificial power signatures, to mask the usage trends
in the real data. Ultimately, our prototype demonstrates that
CHPr’s approach permits a straightforward implementation
using widely-used, off-the-shelf components. Controlling the
power usage of the resistive heating elements found in water
heaters uses the same functionality as a basic dimmer switch,
which rapidly cuts power for some fraction of each alternating
current cycle, e.g., 50 or 60Hz, to precisely adjust power usage.

Result: CHPr functionality is simple to implement and deploy,
requiring only the mechanism of a basic dimmer switch and the
ability to programmatically adjust its dim level in real time.
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Fig. 7. CHPr’s optimizations significantly reduce its energy requirements (a), while (b) shows a demonstration of masking occupancy with our CHPr prototype.

VII. CONCLUSION

This paper presents CHPr (Combined Heat and Privacy),
which prevents occupancy detection using the thermal energy
storage inherent to the large elastic heating loads already
present in many homes, in particular electric water heaters. As
we show in Section II, CHPr leverages thermal energy storage
to mask occupancy because using chemical energy storage, in
the form of batteries, requires a level of energy storage capacity
that is prohibitively expensive. CHPr’s algorithm combines
partial demand flattening, artificial power signature injection,
and activity- and occupancy-aware optimizations to reduce
its energy requirements. Importantly, CHPr does not waste
any energy and does not increase electricity costs: it simply
reschedules the energy a water heater already consumes to
mask occupancy, while ensuring the reserve tank does not
run out of hot water. Our evaluation shows that CHPr is
effective at masking occupancy by regulating the power usage
of a standard 50 gallon (or 189.3 liter) CHPr-enabled water
heater, decreasing the MCC of a threshold-based occupancy
detection attack in a representative home by 10x (from 0.44 to
0.045). Of course, more advanced attack vectors are possible.
While we believe CHPr’s approach is general and could be
adapted to combat more advanced attacks (both known [14]
and unknown), this is the subject of future work. Our current
approach only applies to homes that already have electric water
heaters (38% of U.S. homes based on recent estimates [31]);
generalizing it to use other types of background loads is also
the subject of future work.
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